Evaluating the Alzheimer's disease data landscape
- Published December 16, 2020
- Birkenbihl, C., Salimi, Y., Domingo‐Fernándéz, D., Lovestone, S., Fröhlich, H., & Hofmann-Apitius, M.
- Alzheimer's & Dementia: Translational Research & Clinical Interventions
- https://doi.org/10.1002/trc2.12102
Highlights
- Assessed differences across Alzheimer's disease cohort datasets
- Investigated the ethnoracial composition of AD cohorts
- Precurser study to the ADataViewer
Abstract
Introduction Numerous studies have collected Alzheimer's disease (AD) cohort data sets. To achieve reproducible, robust results in data-driven approaches, an evaluation of the present data landscape is vital.
Methods Previous efforts relied exclusively on metadata and literature. Here, we evaluate the data landscape by directly investigating nine patient-level data sets generated in major clinical cohort studies.
Results The investigated cohorts differ in key characteristics, such as demographics and distributions of AD biomarkers. Analyzing the ethnoracial diversity revealed a strong bias toward White/Caucasian individuals. We described and compared the measured data modalities. Finally, the available longitudinal data for important AD biomarkers was evaluated. All results are explorable through our web application ADataViewer (https://adata.scai.fraunhofer.de).
Discussion Our evaluation exposed critical limitations in the AD data landscape that impede comparative approaches across multiple data sets. Comparison of our results to those gained by metadata-based approaches highlights that thorough investigation of real patient-level data is imperative to assess a data landscape.
Newsletter
If you liked this post, sign up to get updates in your email when I write something new! No spam ever.
Subscribe to the Newsletter